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Abstract: Deep learning has shown impressive diagnostic abilities in Alzheimer’s disease (AD)
research in recent years. However, although neuropsychological tests play a crucial role in screening
AD and mild cognitive impairment (MCI), there is still a lack of deep learning algorithms only
using such basic diagnostic methods. This paper proposes a novel semi-supervised method using
neuropsychological test scores and scarce labeled data, which introduces difference regularization
and consistency regularization with pseudo-labeling. A total of 188 AD, 402 MCI, and 229 normal
controls (NC) were enrolled in the study from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. We first chose the 15 features most associated with the diagnostic outcome
by feature selection among the seven neuropsychological tests. Next, we proposed a dual semi-
supervised learning (DSSL) framework that uses two encoders to learn two different feature vectors.
The diagnosed 60 and 120 subjects were randomly selected as training labels for the model. The
experimental results show that DSSL achieves the best accuracy and stability in classifying AD,
MCI, and NC (85.47% accuracy for 60 labels and 88.40% accuracy for 120 labels) compared to other
semi-supervised methods. DSSL is an excellent semi-supervised method to provide clinical insight
for physicians to diagnose AD and MCI.

Keywords: Alzheimer’s disease; semi-supervised Learning; neuropsychological test;
difference regularization

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative brain disease, which indicates that
the condition gradually worsens over time. Patients in the early stages of AD, namely
mild cognitive impairment (MCI), have a greater likelihood of converting to AD years
later [1]. The lesions of the disease occur mainly in the cerebral cortex and hippocampus,
which causes patients to develop cognitive impairments in language, memory, and other
aspects [2]. Positron emission tomography (PET), magnetic resonance imaging (MRI),
and cerebrospinal fluid (CSF) biomarkers are included in A/T/N system for research [3],
which highlights the importance of reliable biomarkers for AD diagnosis. However, these
measures’ high cost and intrusiveness limit their widespread application and potential in
clinical screening patients for AD [4]. Therefore, it is vital to identify non-invasive, reliable,
and widely available diagnostic biomarkers for AD.

Research has suggested that the traditional diagnosis of cognitive disorders remains
limited to subjective symptoms and observable features, and that ML offers a novel
paradigm that can enable automated and more objective evaluation of various psychi-
atric diseases [5]. In recent years, researchers have used machine learning (ML), especially
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deep learning (DL), instead of traditional methods to assist in the diagnosis of AD [6–8].
In particular, the fully supervised DL-based method is the dominant approach in AD
diagnosis. Specifically, convolutional neural networks (CNN) and graph convolutional
networks (GCN) have demonstrated excellent performance in medical image classification
tasks [9]. Amini et al. [10] compared several ML methods for AD diagnosis using functional
magnetic resonance imaging (fMRI) images. They showed that CNN outperformed all
other traditional ML techniques in effectively detecting AD severity. Zhou et al. [11] pro-
posed an interpretable GCN framework using multimodal brain imaging data to classify
AD, MCI, and normal controls (NC). Considering the node features and their connectivity
in the network, Zhou et al. [12] further proposed a sparse interpretable GCN framework,
which uses multiple modalities of brain imaging data to classify AD. However, due to the
complexity of disease pathology, it is costly to obtain the ground truth labels for AD and
MCI, which requires expert knowledge. The lack of labeled data remains a significant ob-
stacle to the progress of DL in AD diagnosis [13]. Semi-supervised learning (SSL) methods
in DL are particularly suitable for situations where labeled data is scarce [14].

Neuropsychological tests are commonly used in clinical practice to determine the
degree of cognitive impairment including AD and MCI [15]. These tests are short-cycle,
low-cost, and easy to conduct compared to medical imaging and CSF measures. Research
suggests neuropsychological test results may have as much screening potential for AD
patients as CSF and MRI biomarkers [16]. Grassi et al. [17] used predictors integrating
sociodemographic characteristics, cognitive measures, clinical tests, etc. They used multiple
supervised learning methods to identify which subjects with MCI would convert to AD
in the following years. Battista et al. [18] used a combination of support vector machine
(SVM) and 131 measures from 324 participants, including different neuropsychological
tests to classify subjects with different clinical dementia ratings (CDR). Although ML
methods such as SVM have yielded promising results, no predictors can be used as the gold
standard, and some studies have found problems with some measures [19]. As advanced
and prevalent ML methods, neural networks have rarely been applied to diagnosing AD
using neuropsychological tests, whose widespread application will provide clinical insight
for physicians to determine the degree of cognitive impairment.

To address the problem of difficulty in obtaining labeled data, this paper proposes
a new method for Alzheimer’s disease classification that reduces the need for labeled
data based on SSL. Our proposed method applies easily available and non-invasive neu-
ropsychological test data for the diagnosis of AD. First, we calculate the correlation of
each neuropsychological test on the diagnostic results by Pearson’s correlation coefficient
and select features according to the magnitude of the coefficients. Then, we propose the
dual semi-supervised learning (DSSL) algorithm, which uses two different encoders to
learn different feature representations of the samples. In addition, we combine pseudo-
labeling with consistency regularization. The two predictions obtained from the two feature
representations are hard-labeled and then used as mutual pseudo-labels.

To evaluate the classification performance of DSSL, we conduct extensive experiments
in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://ADNI.
loni.usc.edu/ (accessed on 18 December 2021)). Experimental results show that DSSL
largely outperforms existing semi-supervised methods in a variety of evaluation metrics,
and the short training time of the model demonstrates its practicality in clinical diagnosis.
By dividing the training data and performing training many times, we find that DSSL also
has strong stability.

The contributions of this paper are:

1. We select some neuropsychological tests by feature selection, which are better pre-
dictors of automatic classification and can provide clinical diagnostic references
to physicians;

2. Propose a novel semi-supervised method that introduces difference regularization
in unsupervised loss computation to enhance model perturbations by learning two
different feature representations;

http://ADNI.loni.usc.edu/
http://ADNI.loni.usc.edu/
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3. Propose a tri-classification framework for cognitive impairment based on improved
SSL and CNN, which identifies AD, MCI, and NC using the most straightforward
method (i.e., neuropsychological tests) and fewer labels. Experimental results based
on the ADNI dataset indicate that the classifier outperforms other semi-supervised
methods in terms of accuracy and stability.

2. Theoretical Backgrounds

Deep neural networks contain many hidden layers, each containing a large number
of hidden nodes, which gives it a powerful fitting capability to approximate almost any
complex function. However, the powerful fitting ability of deep learning relies on a large
amount of training data. Training with only a small amount of labeled data often leads to
overfitting problems [13]. In addition, the interpretability of deep learning is still being
explored by researchers [20].

2.1. Semi-Supervised Learning

SSL is a powerful method for training models on large datasets with only a small
number of labels. SSL alleviates the need for labeled data by learning the connections and
differences between unlabeled data. In the following sections, we discuss the background
related to this work. For a three-class classification problem, let (x, p) denote a labeled
example and u denote an unlabeled example, respectively. D denotes the number of
labeled samples and µD denotes the number of unlabeled samples. Let pmodel(y|x) denote
the predicted probability generated by the model with input x. Let I(condition) denote
1 if the condition holds and 0 if not. Let H(p, q) denote the cross-entropy between two
probability distributions p and q.

In the semi-supervised task, we aim to predict the classification using several image
labels accurately. Especially for a reasonably large dataset, labeling these images manually
could be a tedious and challenging task. Therefore, it is now understandable why we chose
the semi-supervised algorithm for our study.

2.1.1. Consistency Regularization

Consistency regularization is an essential component of the deep neural network
model in the SSL algorithm. Consistency regularization employs a perturbation strategy
in which the same sample is altered to yield various outputs. The perturbation approach
assumes that the model should output similar predictions when the same input sample
is perturbed. This idea was first proposed in [21] and promoted by [22,23]. The perturba-
tion methods can be divided into sample perturbation methods and model perturbation
methods according to the different perturbation stages. Sample perturbation refers to
the data augmentation of the input sample to obtain a new sample that is different from
the previous sample but mostly similar; model perturbation is a change in the model,
where the same sample undergoes a different model to produce a difference in the out-
put results. Consistency regularization in the model is mainly trained on unlabeled data
by the loss function:

‖pmodel(y|A(u) )− pmodel(y|A(u) )‖2
2, (1)

where ‖·‖2 denotes the L2 norm andA(u) denotes data augmentation. Note that bothA(u)
and pmodel are random functions, so the two terms in Equation (1) are not the same. The con-
sistency regularization with different A(u) belongs to the sample perturbation method.
Virtual adversarial training [24] (VAT) uses adversarial perturbation to generate an adver-
sarial sample that forms a difference from the original sample, and MixMatch [25] uses the
mixup [26] method to perform data augmentation on the input samples. FixMatch [27] uses
both strong and weak augmentations, and experiments with strong augmentations based
on RandAugment [28] and CTAugment [29]. Most of the existing sample perturbation
methods, however, are data augmentation methods used for image data. It is not widely ap-
plicable to other types of data. The consistency regularization with different pmodel belongs
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to the sample perturbation method. Π-model [23] uses the randomness of dropout [30] to
perturb the model so that the outputs of the same input sample are different. Temporal
ensembling [23] uses the average of previous model checkpoints when generating artificial
labels for comparison with the current prediction. Mean teacher [31] divides the model into
two types: the student model, which is a general training model, and the teacher model,
which is obtained by an exponential moving average of the parameters of the student
model. For the same input, the different outputs obtained by the student and teacher
models constitute consistency regularization.

2.1.2. Pseudo-Labeling

The low-density assumption is a common fundamental assumption in SSL, referring
to the classification boundary not passing through high-density regions in the input space.
One way to achieve this assumption requires SSL models to output low-entropy predictions
for unlabeled data. Pseudo-labeling [32] implicitly minimizes entropy by generating a hard
(one-hot) label on the high-confidence prediction results of unlabeled data and using this
hard label along with the model prediction result as parameters for the standard cross-
entropy loss. Letting q = pmodel(y|u) and q̂ = arg max(q), the loss function used for the
pseudo-labeling can be expressed as:

I(max(q) ≥ τ)H(q̂, q), (2)

where τ denotes the threshold. Pseudo-labeling treats the predictions of SSL classifiers on
unlabeled data as artificial labels.

2.1.3. Label Propagation

Label propagation is a graph-based SSL method that associates all labeled and un-
labeled samples by constructing a graph. The nodes in the graph include labeled and
unlabeled samples, and the weights of the edges represent the similarity between two
nodes. The labels of the samples are propagated through the edges between the nodes.
Recently, it has been combined with pseudo-labels as a novel way of giving pseudo-labels
or calculating losses based on pseudo-labels. Iscen et al. [33] used a label propagation
method based on the manifold assumption to predict the current node based on the k nodes
with high similarity, and used the predicted results to generate pseudo-labels for unlabeled
samples. SimPLE [34] introduces pair loss in addition to supervised loss and consistency
loss, which decrease the noise of pseudo-labels by setting a confidence threshold and
similarity threshold.

2.2. Contrastive Learning

Self-supervised learning, unlike supervised learning which requires expensive label-
ing, is able to use unlabeled data to learn the underlying representation. Contrast learning,
one of the important methods of self-supervised learning, aims to learn an encoder that
encodes data of the same kind similarly and makes the encoding results of different classes
of data as different as possible. The Pretext task is a self-supervised task using pseudo-
labels to learn data representation. How to design the pretext task to better fit the SSL
downstream tasks is the key to incorporating self-supervised learning into the SSL model.
The CCSSL [35] framework introduces class-aware contrast loss on top of the SSL model,
seamlessly integrating clustering and comparison in the feature space. LaSSL [36] learns
differentiated feature representations that enable aggregation of same-class samples and
dispersion of different class samples by minimizing class-aware contrast loss and performs
label propagation based on the feature representations.
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3. Materials and Methods
3.1. ADNI Database

Data used in this study is obtained from the ADNI database. ADNI was launched in
2003 as a longitudinal multicenter study led by Principal Investigator Michael W. Weiner.
The initial objective of ADNI was to develop MRI, PET, and other biomarkers for early
detection and tracking. For up-to-date information, see www.adni-info.org (accessed
on 18 December 2021). In this study, we chose baseline neuropsychological data from
the preliminary phase of the project (ADNI-1). The data we used are from 819 subjects
including 188 AD subjects, 402 MCI subjects, and 229 NC subjects. The characteristics of
the subjects selected for this study are shown in Table 1.

Table 1. Subject characteristics.

Characteristic AD (n = 188) MCI (n = 402) NC (n = 229) p-Value

Gender (M/F) 99/80 257/143 119/110 -
Age 75.3 ± 7.5 74.8 ± 7.4 75.9 ± 5.0 -
MMSE 23.3 ± 2.0 27.0 ± 1.8 29.1 ± 1.0 <0.001
CDR 0.7 ± 0.3 0.5 0 <0.001
FAQ 13.1 ± 6.8 3.9 ± 4.5 0.1 ± 0.6 <0.001
ADAS1 6.1 ± 1.5 4.6 ± 1.4 2.9 ± 1.1 <0.001
RAVLT 23.2 ± 7.7 30.6 ± 9.0 43.3 ± 9.0 <0.001
NPIQ 3.5 ± 3.4 1.9 ± 2.7 0.3 ± 0.9 <0.001
GDS 1.7 ± 1.4 1.6 ± 1.4 0.8 ± 1.1 0.14

Data are expressed as mean ± standard deviation. MMSE = mini-mental state examination, CDR = clinical demen-
tia rating, FAQ = functional activity questionnaire, ADAS1 = word list non-learning (mean) RAVLT = Anterograde
episodic memory-verbal, NPIQ = neuropsychiatric inventory Q, GDS = geriatric depression scale. The p-values
for the differences between AD, MCI and NC are based on two-way t-tests with Bonferroni correction.

3.2. Neuropsychological Data

The itemized scores of seven neuropsychological tests are used, including the Alzheimer’s
disease assessment scale-cognitive (ADAS-Cog) [37], the mini-mental state exam (MMSE) [38],
the clinical dementia rating (CDR) [39], the Rey auditory verbal learning test (RAVLT) [40],
the functional activity questionnaire (FAQ) [41], the neuropsychiatric inventory Q (NPIQ) [42],
and the geriatric depression scale (GDS) [43]. These neuropsychological tests are widely used
to determine the degree of cognitive impairment in clinical settings. Appendix A.1 details the
cognitive functions associated with each test. A total of 64 itemized scores are derived from
these seven tests. For each test, we use a different number of sub-scores, including 15 rubric
scores from ADAS-cog, 31 rubric scores from MMSE, 1 rubric score from CDR, 4 rubric scores
from RAVLT, 11 rubric scores from FAQ, 1 rubric score from NPIQ, and 1 rubric score from
GDS. In the semi-supervised learning task of this paper, each itemized score is considered a
feature of the sample. We provide a brief introduction of the neuropsychological tests selected
as features in Appendix .1.

3.3. Method
3.3.1. Features Selection

Feature selection has a highly important role in DL. Pearson’s correlation coefficient
(PCC) [44], one of the most common feature selection methods, is applied to neuropsy-
chological tests in this study. Although PCC cannot assess how similar a combination of
multiple variables is to a single variable, it is still the most popular method for calculating
the similarity between two variables. PCC evaluates the degree of correlation between two
variables by calculating the standard deviation of the two variables and the covariance
between them. PCC between the two variables X and Y is defined as:

ρX,Y =
COV(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
, (3)

www.adni-info.org
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where COV denotes the covariance, µX denotes the mean of X, µY denotes the mean of
Y, σX denotes the standard deviation of X, σY denotes the standard deviation of Y, and E
denotes the expectation. The value calculated by Equation (3) varies from −1 to 1. A value
between 0 and 1 denotes that the two variables are positively correlated, while a value
between−1 and 0 denotes that they are negatively correlated. The closer the absolute value
is to 1, the stronger the correlation between the two variables.

3.3.2. Dual Semi-Supervised Learning

In this subsection, we introduce DSSL, a novel semi-supervised method, as a conve-
nient and accurate classifier for the clinical diagnosis of AD. Inspired by fixMatch [27], DSSL
combines consistency regularization and pseudo-labeling, two SSL methods discussed in
the previous section. Figure 1 shows the overall view of the model for the supervised and
unsupervised parts. DSSL applies model perturbation through two different encoders.
To make the two encoders learn as different features as possible, DSSL introduces differ-
ence regularization, which stretches the distance between the features extracted from the
input by the two encoders. The network architecture of the encoders is shown in Figure 2.
For a sample, two different feature vectors are obtained through Encoder1 and Encoder2,
respectively. These two vectors are then fed into the multilayer perceptron (MLP) network
to obtain two prediction results. They serve each other as pseudo-labels for the different
prediction results, which constitutes consistency regularization. Algorithm 1 provides the
complete DSSL algorithm.

Figure 1. Overview of the proposed model.

Figure 2. An illustration of the composition of the encoder. The encoder mainly consists of a
connection layer, a convolutional layer, a pooling layer, and a connection layer. The main alteration
part of different encoders is in the pooling layer.
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Algorithm 1 DSSL algorithm.
Input: Labeled examples and their labels X = (xd, pd); d ∈ (1, . . . , D), unlabeled

examples U = ud; d ∈ (1, . . . , µD), confidence threshold τ, differential
regularizer loss weight β, unlabeled loss weight λ.

// Cross-entropy loss for labeled data through Encoder1
1 lx1 = 1

D ∑D
d=1 H(pd, pmodel1(y|xd); θ)

// Cross-entropy loss for labeled data through Encoder2
2 lx2 = 1

D ∑D
d=1 H(pd, pmodel2(y|xd); θ)

3 for d=1 to µD do
4 f1 = Encoder1(ud) // Features of ud extracted by Encoder1
5 f2 = Encoder2(ud) // Features of ud extracted by Encoder2
6 q1 = MLP( f1) // Predictions of ud through Encoeder1-MLP module
7 q2 = MLP( f2) // Predictions of ud through Encoeder2-MLP module
8 end
// Difference regularization between two features

9 RD = 1
‖(Norm( f1)−Norm( f2))‖F

// Cross-entropy loss with q2 pseudo-label and q1

10 lu1 = 1
µD

∑µD
I(max(q2) ≥ τ)H(argmax(q2), q1)

// Cross-entropy loss with q1 pseudo-label and q2

11 lu2 = 1
µD

∑µD
I(max(q1) ≥ τ)H(argmax(q1), q2)

12 return lx1 + lx2 + λ(lu1 + lu2) + βRD

3.3.3. Regularization of DSSL

Two regularizations are introduced in our approach, a difference regularization so
that the two encoders learn different features, and a consistency regularization combined
with pseudo-labeling.

Differential Regularizer (RD) — We expect to learn two different aspects of the
feature representation from Encoder1 and Encoder2. Therefore, we apply a difference
regularization between the two features output by the two encoders. The distance between
the two feature vectors is appropriately widened to increase the perturbation and to prepare
for the consistency regularization later. The concrete implementation is shown below:

RD =
1

‖(Norm( f1)− Norm( f2))‖F
, (4)

where Norm is the normalization operation, which aims to put two feature representations
into an order of magnitude to compare, f1 and f2 are the feature vectors learned by the two
encoders, and ‖·‖F denotes the Frobenius norm.

Consistency Regularization— DSSL combines consistency regularization with the
pseudo-labeling approach by turning the model’s predictions into hard labels. Not all
hard labels of the samples are involved in the operation as parameters of the model’s loss
function. The model keeps only the pseudo-labels whose maximum prediction probability
is higher than a predefined threshold. Assuming q2 = pmodel2(y|u), where pmodel2 is the
prediction of the Encoder2-MLP module, and q2 is the prediction probability. Similarly,
pmodel1 is the prediction of the Encoder1-MLP module, and q1 is the prediction probability.
We use q̂2 = arg max(q2) as a pseudo-label. In other words, the category with the highest
prediction probability is obtained as the pseudo-label of the sample. More specifically,
consistency regularization is defined as:

lu1 =
1

µD
∑
µD

I(max(q2) ≥ τ)H(q̂2, pmodel1(y|u)), (5)
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where lu1 is the consistency loss of q1 with q̂2 as the pseudo-label, τ is a scalar hyper-
parameter representing the threshold value used to determine which samples participate
in calculating the loss function.

3.3.4. Loss Function of DSSL

The training objective of DSSL is to minimize the following total objective function:

lT = lx1 + lx2 + λ(lu1 + lu2) + βRD, (6)

where λ and β are regularization coefficients. lu2 is similar to lu1, which computes the cross-
entropy loss of the hard label of q1 with q2. lx1 and lx2 are the standard cross-entropy loss
between the true labels and the output of the Encoder1-MLP module, the Encoder2-MLP
module, respectively. lx1 is formulated as the following expression:

lx1 = − 1
D ∑

D
y log pmodel1(y|x), (7)

where x is the labeled data and y is the accurate label of the data. Since lx2 is similar to lx1,
it will not be discussed further here.

4. Results
4.1. Features Selection

We select a total of 64 itemized scores from 7 neuropsychological tests. To find
characteristics that significantly discriminate Alzheimer’s disease, we do PCC calculations
between their scores and labels. Then, the correlation coefficients are ranked in descending
order of absolute value, and the top 15 features are selected as input for the subsequent semi-
supervised experiments. Their corresponding PCCs are shown in Table 2. The table shows
that their total scores correlate more strongly with the degree of cognitive impairment
compared to the sub-scores of each test.

Table 2. The 15 items with the highest absolute PCC.

Feature Name Absolute PCC Feature Name Absolute PCC

CDR-SB 0.827928 FAQFORM 0.647591
MMSETOTAL 0.766936 RAVLT_immediate 0.629216
ADASMOD 0.743978 FAQFINAN 0.620305
ADAS_Q4 0.721948 FAQTRAVL 0.595336
FAQTOTAL 0.691619 FAQSHOP 0.574347
ADAS11 0.691199 RAVLT_perc_forgetting 0.561252
FAQREM 0.657881 FAQMEAL 0.550885
ADAS_Q1 0.656050

CDR-SB = CDR sum of boxes, MMSETOTAL = total score of MMSE, FAQTOTAL = total score of FAQ,
ADASMOD = total score of ADAS-Cog including Q4 and Q14, ADAS_Q4 = ADAS delayed word recall, FAQTO-
TAL = total score of FAQ, ADAS11 = total score of ADAS-Cog excluding Q4 and Q14, FAQREM = FAQ remember
appointments, ADAS_Q1 = ADAS word recall, FAQFORM = complete forms, RAVLT_immediate = RAVLT
immediate recall, FAQFINAN = FAQ manage finance, FAQTRAVL = FAQ travel out of the neighborhood,
FAQSHOP = FAQ shop, RAVLT_perc_forgetting = RAVLT Percent Forgetting, FAQMEAL = prepare a
balanced meal.

4.2. Implementation

To determine the optimal parameters of the DSSL framework, we use 5-fold cross-
validation, i.e., the dataset is randomly divided into 5 folds. Each time, one fold is selected
for testing and the remaining 4 folds are used for training. DSSL uses the adam optimizer
to optimize the model parameters. As with FixMatch [27], we use an exponential moving
average of the parameters with a decay of 0.999 to update the model instead of the decay
learning rate. This allows the model to converge more smoothly at a higher number
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of iterations and improves the accuracy of the final prediction results [31]. Since we
consider supervised loss and consistency loss to be equally important, we set the consistency
regularization coefficient λ to 1.

In our implementation, the confidence threshold τ in the DSSL loss function plays a
key role in the classification accuracy. To determine the optimal value of τ, we conduct
experiments in which τ is varied from 0 to 0.99. To better understand the role of confidence
threshold in DSSL, we refer to two measures proposed in the FixMatch approach: impurity
rate (the prediction error rate of samples exceeding the threshold) and passing rate (the
number of instances above the threshold as a percentage of the total), calculated as follows:

impurity rate =
∑D

d=1 I(max(q1) ≥ τ)I(yd 6= q̂1)

∑D
d=1 I(max(q1) ≥ τ)

, (8)

mask rate =
1

µD
I(max(q1) ≥ τ). (9)

Table 3 shows the quantity and quality of pseudo-labels and the DSSL classification
accuracy at different τ in the 60-label case. From the results, we can see that there is a
positive correlation between these two indicators, i.e., when the sample pass rate increases,
the impurity rate also increases, which is in line with our expectation. Next, to determine
the optimal value of the difference regularization coefficient β, we report the accuracy scores
for multiple selected values of this parameter at 60 labels in Figure 3a. It can be seen that
the proposed method achieves high prediction accuracy (over 82%) for different values of β,
where the highest accuracy is obtained for β = 2. We also experiment with the performance
variation of DSSL when trained using different training set sizes. In this experiment, we
keep the number of samples with labels below 40% of the number of samples in the training
set. As can be seen in Figure 3b, the performance of DSSL gradually improves as the
training data increases and plateaus after the size of the training data exceeds 500.

Table 3. Passing rate, impurity rate, and accuracy of test set for DSSL with different thresholds in the
60-label case.

τ Passing Rate Impurity Rate Accuracy

0.25 100 18.55 82.05
0.5 100 16.48 84.12
0.75 99.67 16.45 85.1
0.85 98.95 16.58 84.24
0.9 97.79 15.33 85.47
0.95 95.31 14.32 85.22
0.97 93.36 13.16 85.47
0.99 87.64 10.88 85.22
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(a) (b)

Figure 3. Illustrating (a) classification accuracy of the proposed method on different values of β

in the 60-label case and (b) classification performance of the proposed method on different sizes
of training data.

4.3. Results of Disease Classification

To evaluate the performance of the SSL method, five evaluation metrics are chosen:
Accuracy, Sensitivity, Specificity, Recall, and F1-score. The true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) rates are each related to these factors.
The definitions of these evaluation measures are provided below:

Accuracy (ACC) =
TP+TN

TP+TN+FP+FN
, (10)

Sensitivity (SEN) =
TP

TP+FP
, (11)

Specificity (SPE) =
TN

TN+FP
, (12)

Recall (REC) =
TP

TP+FN
, (13)

F1-score (F1) =
2TP

2TP+FP+FN
. (14)

To compare the effect of different labeled sample sizes in the training set on the
classification performance, our experiments are designed with two labeled sample sizes:
60 labeled and 120 labeled. It should be noted that the rest of the training data are unlabeled
samples. In the proposed model, the test data achieved an accuracy of 85.47% with 60-label
training and 88.40% with 120-label training. Figure 4 shows the prediction results for the
test set samples, where the boxes indicate the actual labels of the samples and the dots
indicate the prediction results of the samples by DSSL. T-distributed stochastic neighbor
embedding (t-SNE) can reduce high-dimensional data to two or three dimensions for data
visualization. As shown in the figure, most of the sample points predicted by DSSL fall
correctly in the boxes of the authentic samples.
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Figure 4. The two-dimensional t-SNE plot of the prediction results of DSSL for the test set samples.

The architecture of the two encoders in the DSSL model significantly impacts the
results of the semi-supervised experiments. Figure 2 depicts the internal structure of
the encoders. We experimentally test the effect of changing the encoder structure on
the classification performance, especially when Encoder1 and Encoder2 have the same
structure. The changes to the encoder are mainly focused on the pooling layer, applying
max pooling and average pooling. Table 4 compares the classification results of the DSSL
framework applying different combinations of encoders. It can be seen that the DSSL with
different structures of Encoder1 and Encoder2 has better classification results.

Table 4. Test set evaluation results for DSSL with different encoders in the 60-label case.

Pooling Layer ACC (%) SEN (%) SPE (%) REC (%) F1 (%)

60-label
Max + Max 84.49 82.42 83.05 91.29 80.46
Avg + Avg 84.00 82.05 83.00 91.19 80.42
Max + Avg 85.47 83.77 84.14 91.82 81.92

120-label
Max + Max 88.15 85.89 86.06 93.03 84.60
Avg + Avg 88.27 86.72 87.37 93.41 85.50
Max + Avg 88.40 86.99 87.07 93.20 85.53

Max + Max means the pooling layer of Encoder1 is max pooling, and the pooling layer of Encoder2 is also max
pooling. The other pooling layers are similar.

4.4. Comparison with Other Methods

We compare our proposed method with other existing semi-supervised methods.
The five methods described in Section 2: MixMatch [25], FixMatch [27], SimPLE [34],
CCSSL [35], and LaSSL [36] are considered as baseline methods. To fairly compare these
methods, we reimplement them using the same deep learning framework (i.e., PyTorch)
and model. Considering that the strong augmentation part of the baseline methods is only
applicable to image data, we choose mixup [26] as an alternative to RandAugment [28] or
CTAugment [29] for data augmentation. Table 5 compares the performance of all baselines
and DSSL. We compute the evaluation results for both cases with labeled samples of 60
and 120. All results are averaged for the 5-fold cross-validation. It can be seen that DSSL
outperforms all baselines to a large extent, both in the 60-label and 120-label cases. Figure 5
illustrates box plots of the accuracy of the 5-fold cross-validation experiments for the cases
of 60 and 120 labels, respectively.
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Table 5. The semi-supervised evaluation results of each model for the ADNI database data in the
60-label and 120-label cases.

Method ACC
(%)

SEN
(%)

SPE
(%)

REC
(%) F1 (%)

Training
Time

(Minute)

60-label

MixMatch [25] (2019) 77.29 75.40 88.21 76.73 72.40 1.27
FixMatch [27] (2020) 81.44 79.01 90.27 80.29 76.90 1.15
SimPLE [34] (2021) 80.34 77.39 89.66 78.80 75.26 2.53
CCSSL [35] (2022) 81.07 79.74 89.99 80.05 77.11 2.48
LaSSL [36] (2022) 79.47 76.06 89.15 78.49 74.26 2.82

DSSL 85.47 83.77 84.14 91.82 81.92 2.42

120-label

MixMatch [25] (2019) 82.42 80.55 91.13 81.57 78.16 1.24
FixMatch [27] (2020) 84.49 82.10 91.80 83.71 80.46 1.11
SimPLE [34] (2021) 84.98 82.94 91.92 83.60 85.15 2.51
CCSSL [35] (2022) 78.64 76.03 88.83 76.92 73.23 2.42
LaSSL [36] (2022) 85.10 82.63 91.60 83.66 81.07 2.85

DSSL 88.40 86.99 87.07 93.20 85.53 2.27

(a) (b)

Figure 5. Illustrating (a) each model’s accuracy in a 5-fold cross-validation experiment in the 60-label
case and (b) each model’s accuracy in a 5-fold cross-validation experiment in the 120-label case.

Although we achieve the best classification results in the 5-fold cross-validation ex-
periments, the selection of different labeled data can seriously affect the classification
performance for the SSL algorithm. We randomly select labeled samples from the train-
ing set and repeat this process 100 times to obtain 100 division results. We train these
100 divisions sequentially to observe the stability of the algorithm. The variance of the
100 times predictions for the DSSL and each baseline are shown in Table 6. For visualization
purposes, we select the three models with the slightest variance in each of the two cases
and plot their 100 times results as line graphs, as shown in Figure 6. It can be seen that the
variance of DSSL is the lowest in both the 60-label and 120-label cases, which indicates that
DSSL is more stable than the other baseline methods. In addition, the variance of the model
with 120 labels is generally smaller than that of the case with 60 labels, suggesting that the
increase in the number of labeled samples improves the stability of the SSL algorithm.
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Table 6. The variance of the results of each model after 100 experiments in the 60 and 120 label cases.

Method 60 Labels 120 Labels

MixMatch [25] (2019) 3.84 2.87
FixMatch [27] (2020) 3.62 2.48
SimPLE [34] (2021) 3.41 2.62
CCSSL [35] (2022) 3.38 3.38
LaSSL [36] (2022) 4.34 3.07

DSSL 2.91 2.30

(a) (b)

Figure 6. Illustrating (a) line graphs of the three methods with a minor variance in the results of
100 experiments in the 60-label case and (b) line graphs of the three methods with a minor variance
in the results of 100 experiments in the 120-label case.

5. Discussion

In this study, two encoders are used to learn different features of the sample for
predicting different degrees of cognitive impairment: AD, MCI, and NC. With the ADNI
neuropsychological dataset and a small number of labels, DSSL achieved an accuracy
of 85.47% in the 60-label case and 88.40% in the 120-label case. The comparison results
in Table 5 show that our proposed semi-supervised method outperforms the existing
semi-supervised methods in terms of accuracy, sensitivity, specificity, recall, and F1-score.
The comparison results in Table 6 show that our proposed algorithm is more stable than
the existing semi-supervised methods.

Feature selection has an essential role as a precursor to the classification task. PCC
is one of the most typical and popular similarity measures. The reason we chose PCC
for feature selection is that PCC has the property that shifts in the position and scale of
the variable do not cause a change in this coefficient. This property allows the correlation
between the neuropsychological test scores after normalization and the diagnosis to be the
same as the original values. It helps to improve classification performance while providing
physicians with biomarker references for clinical diagnosis. As seen in Table 2, CDR,
MMSE, ADAS, and FAQ have strong correlations with the degree of cognitive impairment
and their total scores correlate more strongly with the diagnostic outcome compared
to the sub-scores.

For computational complexity, Table 5 shows the training time for DSSL and other
comparative methods. It can be seen that MixMatch and FixMatch take the shortest time,
and our proposed method takes a little longer because it requires updating the parameters
of both encoders. All the experiments are performed on a PC with 2.0 GHz, 8-core CPU,
and 8 GB RAM on a Windows 10 operating system. Overall, all experiments applying
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neuropsychological test data for training require less than 3 min, which demonstrates the
usability of the proposed method for clinical applications.

The confidence threshold seriously affects the quality of the generated pseudo-labels.
Although we find the optimal value of τ in Table 3 through extensive experiments, this is
time-consuming, and there is no guarantee that the set threshold will work for each data
division. The question to be considered is how to weigh the number of unlabeled samples
exceeding the threshold and the consistency rate of pseudo-labels with valid labels. Perhaps
automatic learning of this parameter using neural networks would be a better approach.
This is also how the model will be improved in the future. DSSL diagnoses AD by using
two encoders to learn different features of the sample. To facilitate the visualization of the
learned feature representations, we use Shapley values [45] to quantify the importance of
features in the algorithm predictions. We sort each feature in the feature representation
by its contribution to the model output. Figure 7 shows the top 10 features with the
highest contribution in each of the two feature representations, where class 2, 1, and 0
denote AD, MCI, and NC, respectively. As seen in the figure, all features have higher
impact scores for AD and NC, while MCI as an intermediate stage is weakly influenced
by these features. Moreover, the same features in the two feature representations do not
contribute consistently to the algorithm output, which indicates that the two encoders
in the proposed method do learn different feature representations. However, there are
still limitations in the medical interpretation of these features in correlation with disease
pathology. Using expert knowledge to correct the learned feature representation may yield
better classification results.

(a) (b)

Figure 7. Illustrating (a) 10 features with the highest contribution in the feature representation learned
by Encoder1 and (b) 10 features with the highest contribution in the feature representation learned
by Encoder2.

6. Conclusions

To accurately determine AD severity with easily available features and a limited
number of labels, we propose a novel semi-supervised framework, namely DSSL. We first
collect 64 itemized scores from seven neuropsychological tests and use PCC for feature
selection. A total of 15 features most relevant to the diagnostic results are selected to serve
as input for subsequent semi-supervised experiments. Then, the DSSL model is proposed
to better screen for AD and MCI using only neuropsychological tests and a small amount
of labeling, without the need for costly PET and MRI, etc. The model uses two encoders
and difference regularization to learn two different features from the same sample. Finally,
we empirically demonstrate the validity and stability of our method through extensive
comparisons with a large number of existing semi-supervised algorithms in terms of
accuracy, sensitivity, specificity, recall, F1-score, and variance.
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In the future, the proposed algorithm will be applied to other AD biomarkers of
multimodal data such as MRI, PET, etc. It would be a promising research direction to use
other deep neural network models as encoders to extract potential feature representations
of the data and to explore medical interpretations of the relationship between feature
representations and disease pathology.
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Appendix A

Appendix A.1

We chose 64 itemized scores from the 7 neuropsychological tests whose corresponding
functions are shown in Table A1.

Table A1. Neuropsychological tests used in this study.

Neuropsychological Tests

AQAS-cog Total score of MMSE (1)
Q1: Word recall CDR
Q2: Commands CDR Sum of boxes
Q3: Constructional praxis RAVLT
Q4: Delayed word recall RAVLT Immediate recall
Q5: Object naming RAVLT Learning
Q6: Ideational rraxis RAVLT Forgetting delay
Q7: Orientation RAVLT Percent forgetting
Q8: Word recognition FAQ
Q9: Clarity of language Q1. Manage finance
Q10: Comprehension Q2. Complete forms
Q11: Word finding Q3. Shop
Q12: Remembering test instructions Q4. Perform games of skill or hobbies

https://adni.loni.usc.edu/
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Table A1. Cont.

Neuropsychological Tests

Q14: Number cancellations Q5. Prepare hot beverages
Total score of ADAS11 Q6. Prepare a balanced meal
Total score of ADASMOD Q7. Follow current events
MMSE Q8. Attend to TV, books, or magazines
Orientation to place (5) Q9. Remember appointments
Orientation to time (5) Q10. Travel out of the neighborhood
Registration (3) Total score of FAQ
Attention and concentration (5) NPIQ
Recall (3) Total score of NPIQ
Language (8) GDS
Visual construction (1) Total score of GDS

Appendix .1

ADAS-Cog— ADAS-Cog is a screening instrument that provides a specific assessment
of the severity of cognitive and non-cognitive behavioral impairments. Thirteen tests were
used to assess memory (word recall and word recognition), language (naming and com-
prehension), reasoning (commands), orientation, constructional praxis (copying geometric
designs), and ideational praxis (putting the letter in the envelope). The advantage of the
ADAS-Cog over other scales is that its scores quantify the clinical and impressionistic
aspects of the patient and objectively define cognitive characteristics.

MMSE—MMSE is a comprehensive screening tool commonly used in the clinical diag-
nosis of cognitive impairment. It consists of 30 items assessing 7 main areas: orientation
to place, orientation to time, registration (repetition of words), attention and concentra-
tion (serial subtraction), recall (recall of the previous words), language (naming, writing,
and comprehension), and visual construction (design copy). The total score between 0 and
30 indicates different degrees of cognitive impairment.

CDR—Washington University in St. Louis developed CDR to determine longitudinal
changes in aging and dementia. It measures global cognitive impairment and evaluates
domains including memory, orientation, decision-making and problem-solving, family life
and personal preferences, and independent living abilities. The CDR combines the ratings
of the six functions into a total score, with a more accurate measure of change by the sum
of the boxes.

RAVLT—RAVLT is an anterograde verbal episodic memory test widely used in clinical
practice. Fifteen irrelevant words are given verbally at a rate of one per second, and subjects
are asked to recall these words immediately. The process has been performed a total of five
times. After a 20-min delay filled with irrelevant tests, subjects were asked to review the
initial list of 15 words. Finally, a yes/no recognition test was performed, which consisted
of 30 words, including the original 15 words and 15 randomly inserted words.

FAQ—FAQ rates the subject’s ability to perform daily activities based on interviews
with partners, which assesses the patient’s physical, mental, and social role function
completion and factors that affect daily performance. FAQ uses 10 questions to evaluate
the above indicators, with a total score of 30. Subjects are considered to have social activity
dysfunction when the total score is greater than nine.

NPIQ—NPI is a validated, multi-item, reliable tool for assessing the psychopathology
of patients with AD. The assessment of NPI is based on interviews with caregivers or
eligible partners, which are relatively brief (15 min). The NPIQ is a short version of the NPI,
which only screens questions and severity ratings for each domain. The highest score is 36.

GDS—GDS is a self-report assessment that is used to diagnose the degree of depression
in older adults. This scale, comprising thirty entries, assesses the following areas: depressed
mood, irritability, and reduced mobility. In addition, subjects are asked to answer yes or no
for each entry of the GDS.
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